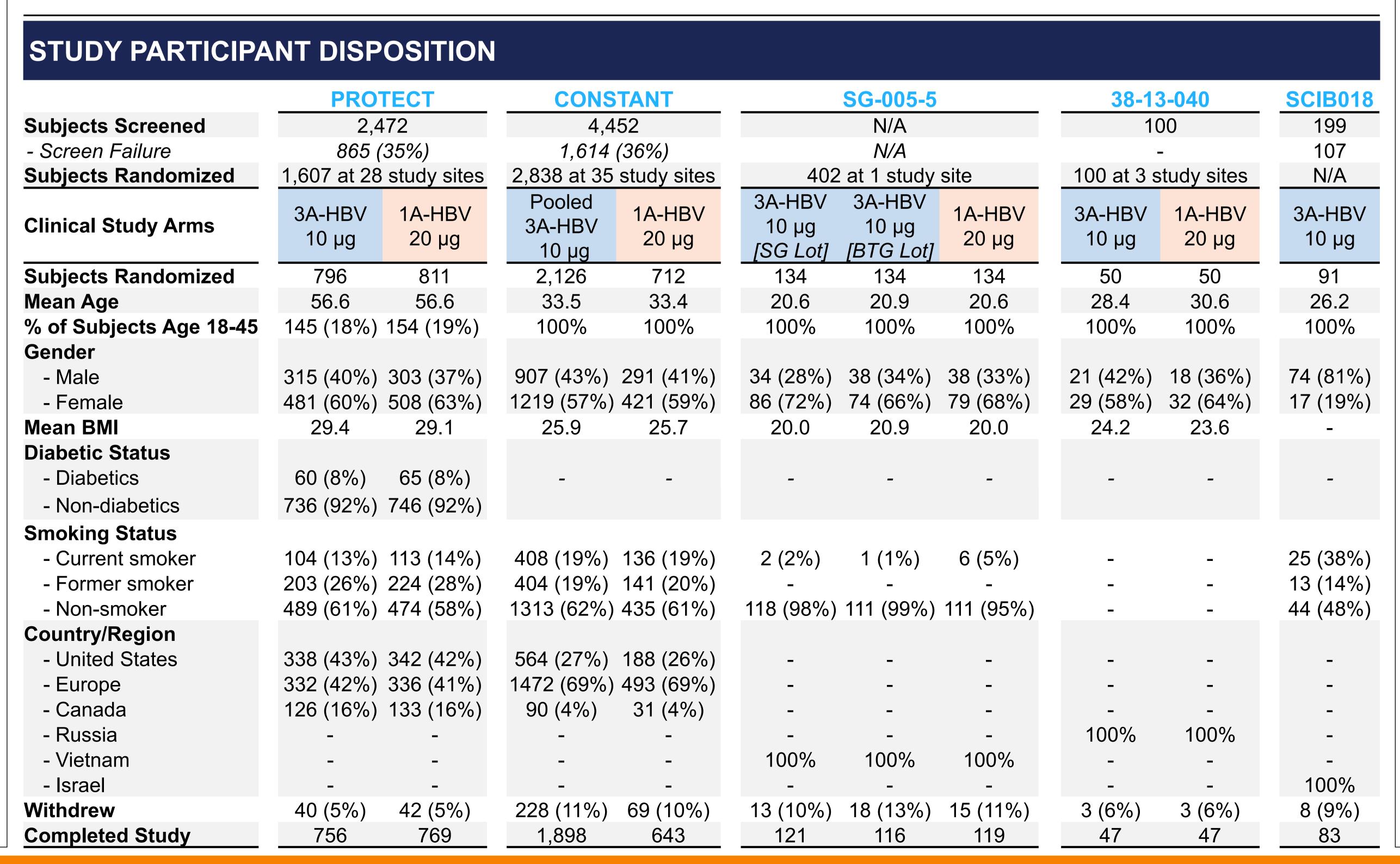
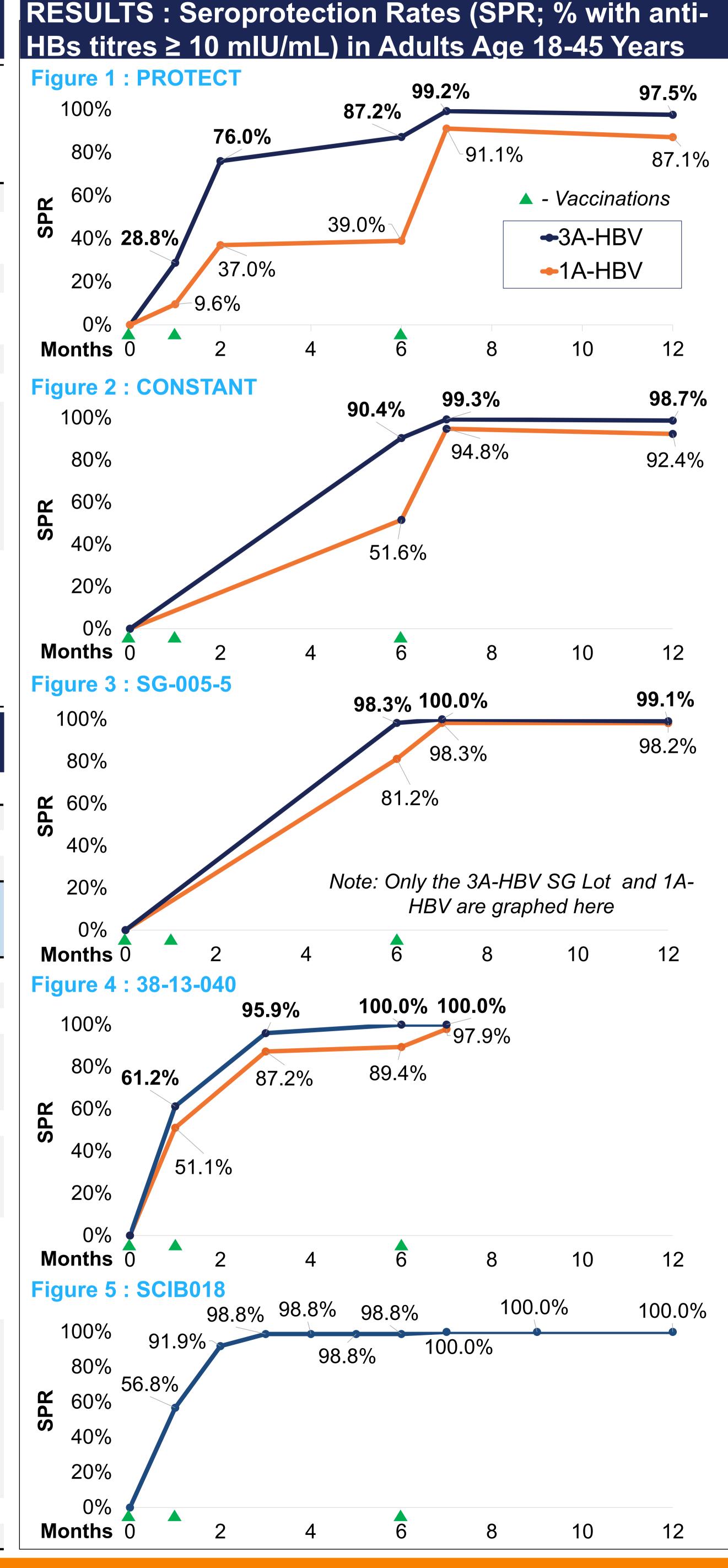


A 3-antigen prophylactic hepatitis B virus vaccine confers rapid onset of protection in young adults, age 18-45, compared to a single-antigen hepatitis B virus vaccine

Francisco Diaz-Mitoma¹, Timo Vesikari², Joanne M. Langley^{3*}, Nathalie Machluf¹, Johanna N. Spaans¹, Bebi Yassin-Rajkumar¹, David E. Anderson¹, Vlad Popovic¹

¹VBI Vaccines Inc., Cambridge, Massachusetts, United States; ²Nordic Research Network, Tampere, Finland; ³Departments of Pediatrics and Community Health and Epidemiology, Canadian Center for Vaccinology, Halifax, Nova Scotia, Canada; *for the Canadian Immunization Research Network




INTRODUCTION

- Vaccination rates against Hepatitis B Virus (HBV), a leading cause of liver cirrhosis and hepatocellular carcinoma, remain low in adults.
- The European Centre for Disease Prevention and Control cites adults age 25-34 as the age group most affected by both acute and chronic HBV infections, accounting for 30% of reported cases by 30 EU/EEA Member States in 2017, followed by adults age 35-44 years.
- Younger adults who are at risk of HBV infection through exposure in the workplace or home, travel to countries with high HBV prevalence, or through exposure as a result of high-risk behavior, need a highly effective and safe HBV vaccine with a rapid onset of seroprotection.
- 3A-HBV is a 3-antigen
 HBV vaccine that contains
 the three distinct HBV
 surface antigens (HBsAg)
 – S, pre-S1, and pre-S2 –
 is adjuvanted with alum,
 and manufactured in
 mammalian CHO cells.
- The pre-S1 antigen induces key neutralizing antibodies that block virus-receptor binding. T cell response to pre-S1 and pre-S2 antigens could further boost responses to the S antigens, resulting in a more immunogenic vaccine.^{1,2}

STUDY DESIGNS & OBJECTIVES **CONSTANT PROTEC1 SG-005-5** 38-13-040 SCIB018 Phase 3 Phase 3 Phase 3 Phase 3 Phase 4 (Europe, US, Canada) (Europe, US, Canada) (Vietnam) (Russia) (Israel) [NCT03393754] [NCT04531098] [NCT03408730] [NCT04209400] [NCT04179786] N size 1,607 2,838 100 402 91 Age Range 18-45 years 20-40 years 18-45 years 18-45 years 18+ years 3A-HBV 10 µg 10 µg 10 µg 10 µg 10 µg **Control Vaccine** 20 μg 1A-HBV 20 μg 1A-HBV 20 µg 1A-HBV 20 μg 1A-HBV Random. 1:1:1:1 0, 4, 24 weeks 1, 28, 180 days 0, 4, 24 weeks 0, 30, 180 days 0, 1, 6 months Dosing Qualify new in-house Based on SPRs at Day Consistency of immune Demonstration of reference standard in response at Day 196 as Seroconversion rates Non-inferiority in adults compliance with the **Primary** clinical equivalence of after the 2nd and 3rd measured by GMC of anti-2 production lots of 3A-European Pharmacopeia Endpoint(s) ≥ age 18 HBs across three vaccination ii. Superiority in adults ≥ and the Israeli Ministry of HBV consecutive lots of 3A-HBV age 45 Health Anti-HBs response just SPRs after 2nd and 3rd Characterize immunological Safety and tolerability, anti-Safety and tolerability, SPR Secondary prior to and 6 months HBs titers, kinetics of anti-HBs titers, kinetics of vaccination, safety and responses, safety and & Exploratory after 3rd dose, safety tolerability immune response immune response tolerability Endpoint(s)

and tolerability

CONCLUSIONS

- In all 5 studies, 3A-HBV demonstrated its ability to rapidly induce high SPRs in adults age 18-45, a population in which HBV infection rates are the highest.
- Vaccination with 3A-HBV. achieved SPRs of 87.2-100.0% after 2 doses (Month 6) vs. 39.0-89.4% with 1A-HBV.
- SPRs increased to 99.2%+ after the 3rd dose of 3A-HBV *vs.* 91.1-98.3% with 1A-HBV.
- No major safety signals were observed, and adverse events were well-balanced and consistent with the known safety profiles of both vaccines.
- 3A-HBV had higher rates of mild or moderate injection site pain and tenderness, and myalgia compared to 1A-HBV.

REFERENCES

- 1. Heermann KH *et al., J Virol*. 1984;52(2):396-402
- 2. Milich DR *et al. Science*. 1985;228(4704):1195-1199.

ACKNOWLEDGEMENTS

We thank all clinicians, nurses, and volunteers who contributed to these studies. The contribution of scientists and technologists at VBI Vaccines Inc. is greatly appreciated.

DISCLOSURE

Drs. Timo Vesikari and Joanne M. Langley were the Principal Investigators of these studies and their institutions received financial support for the services performed for conducting the studies.

CONTACT INFORMATION

Dr. Francisco Diaz-Mitoma fdiazmitoma@vbivaccines.com

