Higher seroprotection rates (SPR) and anti-HBs titers achieved in adults with a 3-antigen hepatitis B vaccine (3A-HBV) compared to a 1-antigen hepatitis B vaccine (1A-HBV): Results of the PROTECT study

Francisco Diaz-Mitoma, M.D., Ph.D. Chief Medical Officer – VBI Vaccines

2021 **#ACVR**

Hepatitis B Disease Burden

Hepatitis B Virus (HBV) is a leading cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma worldwide

- Chronic HBV infections worldwide range from 240 million to 350 million, with an estimated 2.2 million in the US alone, and more than 2 billion people globally ever infected with HBV (acutely or chronically)^{1,2}
- Acute HBV infection rates in the US increased by 11% from 2014-2018, increases most notable in states impacted most by the ongoing opioid epidemic³
- New HBV infections in the US are the highest among adults ages 30-49
- Of all chronic HBV infections, 33.2% are among 25-39, 32.0% are among 45-54, and 27.6% are among adults > 55 years⁴
- Healthcare workers, the military, and travelers to endemic regions are most in need of a HBV vaccine that ensures
 rapid seroprotection
- With no currently-available functional cure for HBV, vaccination is a critical pillar of the public health response to HBV
- Improved HBV vaccines are needed to ensure safe and effective seroprotection against HBV for those who are older, obese, or those with impaired immune function, including diabetics

Sources : ¹World Health Organization. Hepatitis B Fact Sheet. https://www.who.int/en/news-room/fact-sheets/detail/hepatitis-b#. Accessed June 2020; ²HHS. Viral Hepatitis in the United States: Data and Trends. https://www.hhs.gov/hepatitis/learn-about-viral-hepatitis/data-and-trends/index.html; Accessed February 2021; ³HHS Viral Hepatitis National Strategic Plan for the United States: A Roadmap to Elimination (2021-2025). https://www.hhs.gov/sites/default/files/Viral-Hepatitis-National-Strategic-Plan-2021-2025.pdf; ⁴ https://www.cdc.gov/hepatitis/statistics/2016surveillance/pdfs/2016HepSurveillanceRpt.pdf

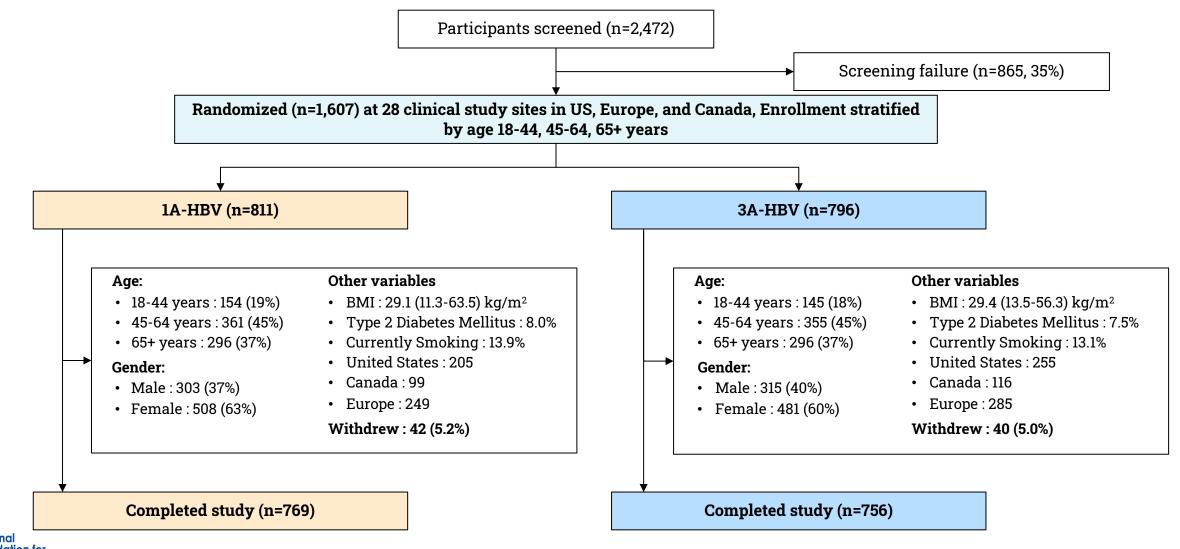
Phase 3 Clinical Program of a 3-Antigen HepB Vaccine

Objective : Assess the immunogenicity, safety, and manufacturing consistency of 10µg of a 3-antigen HepB vaccine (3A-HBV), and compare it to 20 µg of Engerix-B[®] (1A-HBV), a single antigen HepB vaccine considered to be standard-of-care:

- **PROTECT** : A head-to-head safety and immunogenicity study [NCT03393754]
 - Co-primary objectives of : (1) non-inferiority of seroprotection rates (SPR) in adults ≥ age 18 years, and (2) superiority
 of SPR in adults ≥ age 45 years

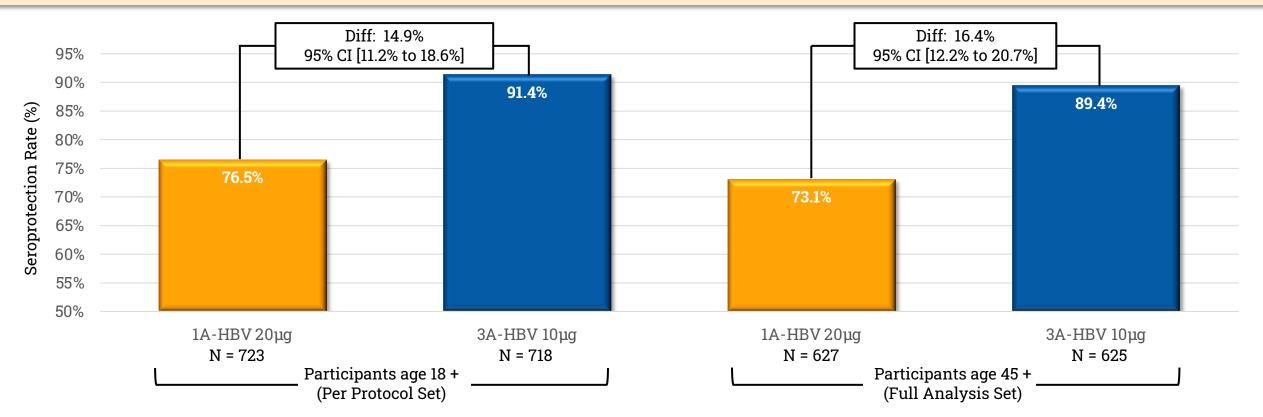
Focus of today's presentation

- **CONSTANT** : A four-arm lot-to-lot consistency study [NCT03408730]
 - Primary objective : consistency of immune response as measured by geometric mean concentration (GMC) of anti-HBs titers across three consecutively manufactured lots of 3A-HBV


3A-HBV vs. 1A-HBV : Vaccine Design & Function

Viral antigens mimicked:II $S Antigen$ \checkmark \checkmark $Pre-S2$ \checkmark \checkmark $Pre-S1$ \checkmark \checkmark Dose of S Antigen:10µg20µgAdjuvant:Alum			3A-HBV	1A-HBV
Pre-S2 \checkmark \checkmark Pre-S1 \checkmark \checkmark Dose of S Antigen:10µg20µg	Viral antigens mi	imicked:		
Pre-S1 ✓ Dose of S Antigen: 10µg 20µg	S Antigen		\checkmark	\checkmark
Dose of S Antigen: 10μg 20μg	Pre-S2		\checkmark	
	Pre-S1		\checkmark	
Adjuvant: Alum Alum	Dose of S Antiger	1:	10µg	20µg
	Adjuvant:		Alum	Alum
Derivation:Mammalian CellrDNA yeast	Derivation:		Mammalian Cell	rDNA yeast

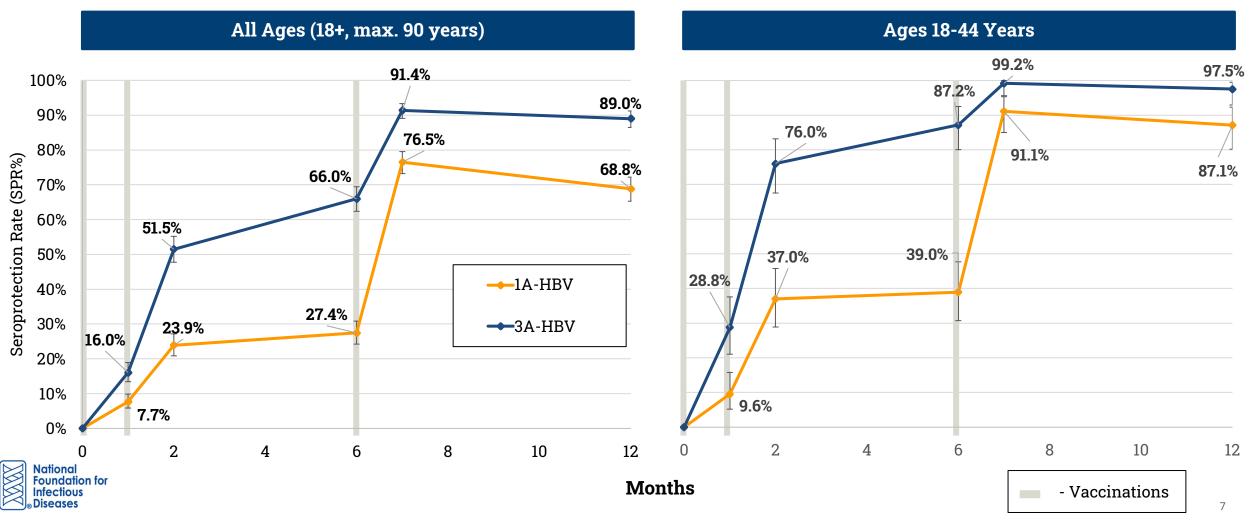
- Pre-S1 antigen induces key neutralizing antibodies that block virus receptor binding [Neurath AR et al., 1989]
- T cell response to pre-S1 and pre-S2 antigens can further boost responses to the S antigens, resulting in a more immunogenic response /Hellström UB et al., 2009/


PROTECT Study Participant Disposition

PROTECT : Both Co-Primary Endpoints Met

Co-Primary Endpoints at Day 196, 4 weeks post-3rd vaccination

1. Non-Inferiority of seroprotection rate (SPR) achieved in all subjects age 18+ 2. Statistical and clinical superiority, as defined in the protocol, achieved in subjects age 45+



- Non-inferiority: The lower bound of the 95% CI of the difference between the SPR in the 3A-HBV arm minus the SPR in the 1A-HBV arm is > -5%
- *Statistical superiority: T*he lower bound of the same 95% CI is >0%
- *Clinical superiority: T*he lower bound of the same 95% CI is >5%

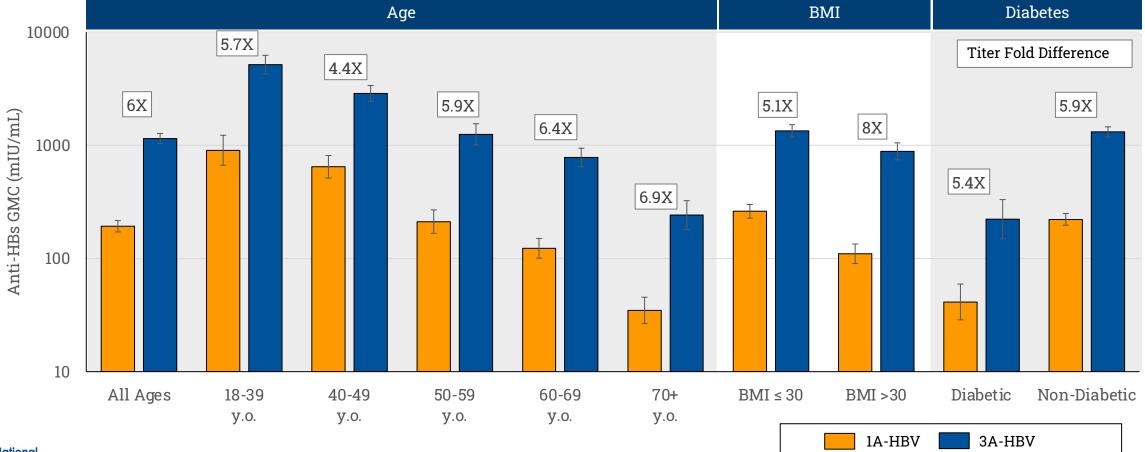
PROTECT : Kinetics of SPR by Age

3A-HBV achieved higher SPR vs. 1A-HBV at all time points – in participants age 18-44, 87.2% were protected after 2 doses of 3A-HBV vs. 39.0% for 1A-HBV

PROTECT : SPR in Subgroup Populations

3A-HBV achieved higher SPR vs. 1A-HBV in key subgroup analyses at Day 196

			Difference in	n SPR (%)						
Participant Po	opulations*	Ν	[95% Confiden	ce Interval]						
All Participants		1,441	14.9% [11.2%, 18	6%]	1	—— — —				
	18-44 Years	260	8.1% [3.4%, 14.1	2%]	<u> </u>					
Age	45-64 Years	647	14.7% [9.8%, 19.	3%]						
	65+ Years	534	18.9% [11.6%, 26	.1%]	I I			-		
Gender	Men	551	17.4% [10.6%, 24	.2%]						
Gender	Women	890	13.7% [9.5%, 18.0)%]			_			
Diabetic Status	Diabetics	114	25.0% [8.4%, 40.	4%]						
Diabetic Status	Non-Diabetics	1,327	13.9% [10.2%, 17	7%]			-			
Body Mass	BMI > 30 (Obese)	523	21.1% [14.3%, 28	8.0%]						
Index (BMI)	BMI ≤ 30	918	11.6% [7.4%, 16.	0%]						
Alcohol	0-1 Drinks/Day	1,325	13.9% [10.1%, 17	8%]			_			
Consumption	2-3 Drinks/Day	108	29.8% [19.5%, 42	.7%]						
0	Smoker	187	15.3% [3.5%, 27.)%]	- 1			_		
Smoking Status	Past Smoker	385	12.0% [4.7%, 19.	5%]						
otatab	Non-Smoker	869	16.0% [11.4%, 20	.6%]						
	US	601	18.4% [11.8%, 25	0%]						
Geography	Europe	601	11.1% [6.2%, 16.	3%]						
	Canada	239	15.0% [8.0%, 23.	L%]						
Ftherioiter/	Hispanic or Latino	132	20.3% [6.8%, 33	9%]	1	·	D			
Ethnicity/ Race	Non-Hispanic or Latino	1,303	14.4% [10.6%, 18	.3%]		—— — —				
	Black or African-American	108	9.5% [-5.4%, 24	.8%] –	<u></u>					
National Foundation for				-10%	0%	10%	20%	30%	40%	50%


Favors 1A-HBV Favors 3A-HBV

^{ses} * Per Protocol Set

8

PROTECT : Anti-HBs Titers in Subgroups

5-8x higher antibody GMC is maintained for participants who received 3A-HBV vs. 1A-HBV, regardless of age, BMI, or diabetic status

National Foundation for Infectious ® Diseases

PROTECT : Safety Evaluation

Serious Adverse Events (SAEs)

	3A-HBV	1A-HBV
SAEs occurring in ≥ 2 participants:		
Atrial Fibrillation	1 (0.1%)	2 (0.2%)
Cardiac failure congestive	2 (0.3%)	-
Colon cancer	-	2 (0.2%)
Cholelithiasis	1 (0.1%)	1 (0.1%)
Ankle fracture	1 (0.1%)	1 (0.1%)
Osteoarthritis	1 (0.1%)	1 (0.1%)
Cerebrovascular accident	1 (0.1%)	1 (0.1%)

- 95.2% in 3A-HBV and 96.8% participants in 1A-HBV completed full course of vaccination
- Low rate of vaccine discontinuation due to non-serious AEs of 0.4% vs. 0.4% and 0.3% vs. 0.2% due to SAEs for 3A-HBV and 1A-HBV, respectively
- Low rates of SAEs reported (1A-HBV: 2.6% and 3A-HBV: 4.0%)
- Only one SAE, viral gastroenteritis, probably related to 3A-HBV
- Higher rates of mild or moderate injection site pain, tenderness, and myalgia reported by subjects receiving 3A-HBV compared to 1A-HBV

Unsolicited AEs

	3A-HBV	1A-HBV
1+ AEs reported throughout study (% of participants)	52.5%	54.5%
AEs reported by \geq 1% of participants:		
Headache	8.5%	8.3%
URI	6.3%	6.7%
Fatigue	4.1%	4.9%
Nasopharyngitis	3.9%	3.5%
Injection site pain	2.9%	1.6%
Back pain	4.4%	2.8%
Arthralgia	2.1%	2.5%
Diarrhea	1.3%	2.6%
UTI	2.1%	2.1%
Oropharyngeal pain	1.9%	2.2%
Dizziness	1.5%	1.2%
Sinusitis	1.4%	2.1%
Hypertension	1.3%	1.6%
Respiratory rate increase	1.3%	0.9%
Gastroenteritis	1.3%	0.5%
Nausea	0.4%	1.2%
Cough	1.1%	1.0%
Neck pain	0.8%	1.1%
Bronchitis	1.0%	0.7%
Muscle strain	1.0%	0.7%

Summary of PROTECT Data

In PROTECT, when compared to 20 µg of 1A-HBV, 10 µg of 3A-HBV demonstrated:

- Non-inferiority to 1A-HBV in all adults age 18+ (91.4% vs. 76.5%) [difference 14.9%; 95% CI: 11.2, 18.6%] and superiority, as defined in the clinical protocol, in adults ≥ age 45 years (89.4% vs. 73.1%) [difference 16.4%; 95% CI: 12.2, 20.7%]
- Higher SPR in key high-risk and immunocompromised populations including obese individuals (89.2% vs. 68.1%), diabetics (83.3% vs. 58.3%), and subjects age 65+ (83.6% vs. 64.7%)
- A more rapid immune response, resulting in higher SPR at each time point compared
- A safety profile consistent with previous studies no safety signals observed

Next Steps:

ational

- U.S. FDA accepted filing of BLA for 3A-HBV for the prevention of infection caused by all known subtypes of HBV in adults
- The FDA has set a Prescription Drug User Fee Act (PDUFA) target action date of November 30, 2021 oundation for

Acknowledgements

All study participants and Principal Investigators :

Finland

- Timo Vesikari and Aino Forsten (Coordinating P.I.)
- Miia Virta
- Ilkka Seppä
- Anitta Ahonen
- Solli Henriksson
- Benita Ukkonen
- Satu Kokko
- Outi Laajalahti
- Pauliina Paavola

 Joanne Langley (Coordinating P.I.)

Canada

- Brian Ward
- Curtis Cooper
- Marc Dionne
- Soren Gantt
- P. Guillaume Poliquin
- Janet Elizabeth McElhaney
- Naveen Garg
- Gerald Vallieres
- Ronnie Aronson
- Dennis Reich

- U.S.

 Nathan Segall
 Bruce Rankin
 Mary Beth Manning
 Carl Griffin
 Amina Z. Haggag
 Mark E. Kutner
- Mark Turner
- Barbara E. Rizzardi

٠

•

- Michael Levin
- Hayes Williams
- Hamilton Sah
- Samir Arora
- Peter Jerome Ruane Jr
- Corey Anderson
- Clancy L Cone

- BelgiumGermanyUKPierre Van Damme• Michael Manns• Adam FinnIsabel Leroux-Roels• Catherine CosgroveGeert Leroux-Roels• Saul Faust• Mabashi N
 - Maheshi N Ramasamy

12